INFINITE $B_2[g]$ SEQUENCES

BY

JAVIER CILLERUELO

Universidad Autónoma de Madrid, 28049 Madrid, Spain e-mail: franciscojavier.cilleruelo@uam.es

AND

CARLOS TRUJILLO*

Universidad del Cauca, Popayan, Colombia e-mail: trujillo@atenea.ucauca.edu.co

ABSTRACT

We exhibit, for any integer $g \geq 2$, an infinite sequence $A \in B_2[g]$ such that $\limsup_{x \to \infty} A(x)/\sqrt{x} = (\sqrt{9/8})\sqrt{g-1}$. Furthermore, we obtain better estimates for small values of g. For instance, we exhibit an infinite sequence $A \in B_2[2]$ such that $\limsup_{x \to \infty} A(x)/\sqrt{x} = \sqrt{3/2}$.

Introduction

For $g \in \mathbb{N}$, denote by $B_2[g]$ the class of all sets $A \subset \mathbb{N}$ such that, for all $n \in \mathbb{N}$, the equation a + a' = n, with $a, a' \in A$, $a \leq a'$, has at most g solutions. The sets $B_2[1]$ are called **Sidon sets**.

Erdős proved in [6] that, if A is an infinite Sidon sequence, then $\lim\inf_{x\to\infty}A(x)/x^{1/2}=0$, where $A(x)=\#\{a\leq x\colon a\in A\}$ is the counting function. On the other hand, he showed that there exists an infinite Sidon sequence such that $\limsup_{x\to\infty}A(x)/x^{1/2}=1/2$. This limit was improved to be $1/\sqrt{2}$ by Kruckeberg [5]. Much less is known on infinite $B_2[g]$ sequences for g>1. It is conjectured that $\liminf_{x\to\infty}A(x)/x^{1/2}=0$ for any infinite $B_2[g]$ sequence, but this is unproved even for g=2.

^{*} Partially supported by Colciencias, Colombia and Universidad del Cauca. Received March 7, 1999 and in revised form September 15, 2000

As for $\limsup_{x\to\infty} K$ olountzakis [4] proved there is an infinite $B_2[2]$ sequence A such that $\limsup_{x\to\infty} A(x)/x^{1/2}=1$. Xing De Jia dealt in [3] with such limits. Although his method does not work for usual $B_2[g]$ sequences, he gets upper bounds for sequences such that, for a fixed module m, the number of solutions $a, a' \in A$ for the equation $n \equiv a + a' \pmod{m}$, $a \leq a'$, is at most g, for each integer n.

By proceeding in a different way, we have improved the former lower bounds on infinite $B_2[g]$ sequences for $g \geq 2$:

THEOREM 1: For all $g \geq 2$ there exists an infinite $B_2[g]$ sequence A such that $\limsup_{x\to\infty} A(x)/\sqrt{x} = L_g$ where

$$L_g = \begin{cases} \sqrt{3/2}, & g = 2, \\ 3/2, & g = 3, \\ \sqrt{\frac{36}{11}}, & g = 4, \\ \sqrt{\frac{9}{2}}, & g = 5, \\ \sqrt{\frac{100}{17}}, & g = 6, \\ \sqrt{\frac{27}{4}}, & g = 7, \\ \sqrt{8}, & g = 8, \\ \sqrt{\frac{9}{8}}\sqrt{g-1}, & g \ge 9. \end{cases}$$

Proof of Theorem 1

In order to prove the theorem, we only need to show that any $B_2[g]$ sequence

$$A_0 = \{n_1 < n_2 < \dots < n_k\}$$

can be extended to a $B_2[g]$ sequence

$$A = \{ n_1 < \dots < n_k < n_{k+1} < \dots < n_l \},\,$$

where $l/\sqrt{n_l} = A(n_l)/\sqrt{n_l} \ge L_g + o(1)$.

For the construction of A we need two special sets C_g and B_p ; their properties are stated in the following two propositions, whose proofs we postpone to the end of the section.

PROPOSITION 1: For any prime p, there exists a set $B_p \subset (p^{1/2}, p^2 - p^{1/2})$ such that

- (i) if $b + b' \equiv b'' + b''' \mod p^2 1$ for $b, b', b'', b''' \in B_p$, then $\{b, b'\} = \{b'', b'''\}$,
- (ii) $|b b'| > p^{1/2}$ for all different $b, b' \in B_p$,

(iii)
$$|B_p| > p - 4p^{1/2}$$
.

PROPOSITION 2: For $g \geq 2$, there exists an integer u_g and a set $C_g \subset [0, u_g]$ such that $r(n) = \#\{n = c + c'; c, c' \in C_g\}$. Then

- (i) $r(n) \leq g$ for all integer n,
- (ii) $r(c) \leq g-1$ and $r(c-1) \leq g-1$ for all $c \in C_g$,
- (iii) $|C_g|/\sqrt{u_g+1}=L_g$, where L_g is defined as in Theorem 1.

THE CONSTRUCTION OF A. For $x = n_k$, a prime p such that $x^2 , and <math>m = p^2 - 1$ we define $A = A_0 \cup D$ where

$$D = \bigcup_{c \in C_q} (B_p + cm + 2x);$$

the sets B_p and C_g are defined as in Propositions 1 and 2.

Obviously, the sequence A is an extension of A_0 . Thus, we are supposed to prove that A is a $B_2[g]$ sequence satisfying $|A|/\sqrt{n_l} = L_g + o(1)$, where n_l is the biggest element of A.

PROPOSITION 3: The sequence A is a $B_2[g]$ sequence.

Proof: If $n \leq 2x$, then all the representations of n as a sum of two elements of A are of the form a + a' with $a, a' \in A_0$. Since A_0 is a $B_2[g]$ sequence, there are at most g representations.

If n > 2x, there is at most one representation of the form a + d with $a \in A_0$, $d \in D$. Otherwise, if n = a + d = a' + d', then $x > |a - a'| = |d - d'| = |b - b' + (c_i - c_{i'})m| > p^{1/2} > x$. We have used in this inequality the property (ii) of Proposition 1 whenever $c_i = c_{i'}$ and the condition $B_p \subset (p^{1/2}, p^2 - p^{1/2})$ whenever $c_i \neq c_{i'}$. We consider two cases:

(1) $n \in A_0 + D$. Suppose there are more than g representations

$$n = a + d = d_1 + d'_1 = \dots = d_g + d'_g,$$

 $n = a + (b + cm + 2x)$

$$= (b_1 + c_{j_1}m + 2x) + (b'_1 + c_{j'_1}m + 2x) = \cdots = (b_g + c_{j_g}m + 2x) + (b'_g + c_{j'_g}m + 2x).$$

We can assume that d_i and d'_i are such that $b_i \leq b'_i$ and, because of the property (i) of Proposition 1, we obtain $b_i = b_j$ and $b'_i = b'_i$ for all i, j. Therefore,

$$a+b-b_1-b_1'-2x+cm=(c_1+c_1')m=\cdots=(c_g+c_g')m.$$

We remark that $a+b-b_1-b_1'-2x < x+(p^2-p^{1/2})-p^{1/2}-p^{1/2}-2x < p^2-3p^{1/2} < m$ and $a+b-b_1-b_1'-2x > 1+p^{1/2}-(p^2-p^{1/2})-(p^2-p^{1/2})-2x =$

 $-2m+3p^{1/2}-2x-1>-2m$, where, in the last inequality, we have used $x< p^{1/2}$. As a consequence, $a+b-b_1-b_1'-2x$ is either 0 or -m. If we divide all terms in the above inequality by m, we obtain g representations of c or c-1 as sums of elements of C_g . But this is impossible, because of property (ii) of Proposition 2.

(2) $n \notin A_0 + D$. Then all the representations are of the form d + d' with $d, d' \in D$. If we order the sets $\{d_i, d'_i\}$ as before, we obtain $b_i = b_j$ and $b'_i = b'_j$ for all i, j. If there were more than g representations, there would be more than g different representations of an integer of the form $c_i + c'_i$ with $c_i, c'_i \in C_g$, which is impossible because of property (i) of Proposition 2.

PROPOSITION 4: For the biggest element n_l of A, we have

$$\frac{|A|}{\sqrt{n_l}} = L_g + o(1).$$

Proof: The cardinality of the sequence A is

$$|A| = |A_0| + |C_g||B_p| \ge |C_g|m^{1/2}(1 + o(1)),$$

and $A \subset [1, (u_q + 1)m + o(m)].$

As a consequence,

$$\frac{|A|}{\sqrt{n_l}} = \frac{|C_g|m^{1/2}(1+o(1))}{\sqrt{m(u_g+1)+o(m)}} = L_g+o(1),$$

in view of property (iii) of Proposition 2.

Proof of Proposition 1: Chowla and Erdős [2] proved that, for every prime p, there exists a Sidon sequence $B \subset [1, p^2 - 1]$ with p terms such that, if $b + b' \equiv b'' + b''' \mod p^2 - 1$, then $\{b, b'\} = \{b'', b'''\}$.

The set B_p , for which we are looking, will be the set B minus the subset of elements lying in the union of intervals $[1, p^{1/2}] \cup [p^2 - p^{1/2}, p^2 - 1]$ and minus those b, b' such that $|b - b'| < p^{1/2}$.

Since all differences b-b' are distinct, the cardinality of $B \setminus B_p$ is at most $4p^{1/2}$.

Proof of Proposition 2: It was proved in [1] that the set

$$A^g = \{k: \le k \le g-1\} \cup \{g-1+2k: 1 \le k \le [g/2]\}$$

satisfies $r(n) \leq g$, for any integer n.

We take $C_g = A^{g-1}$ and thus $r(n) \leq g-1$, for any integer n. In particular, the set C_g satisfies conditions (i) and (ii) of Proposition 2. It is easy to check that (iii) is also satisfied.

For $g \leq 8$, let

$$C_2 = \{1,2,5\}, \quad C_3 = \{0,1,3\}, \quad C_4 = \{0,1,2,4,7,10\},$$

$$C_5 = \{0,1,2,3,5,7\}, \quad C_6 = \{0,1,2,3,4,6,8,11,13,16\},$$

$$C_7 = \{0,1,2,3,4,5,7,9,11\}, \quad C_8 = \{0,1,2,3,4,5,6,8,10,12,15,17\}.$$

It is easy to check that these sets satisfy the conditions of Proposition 2.

ACKNOWLEDGEMENT: We thank the referee for many suggestions which have made this article more readable.

References

- [1] J. Cilleruelo, I. Ruzsa and C. Trujillo, Upper and lower bound for finite $B_h[g]$ sequences, g > 1, preprint.
- [2] H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, New York, 1983.
- [3] X.-D. Jia, $B_h[g]$ sequences with large upper density, Journal of Number Theory **56** (1996), 298–308.
- [4] M. N. Kolountzakis, The density of $B_h[g]$ sequences and the minimum of dense cosine sums, Journal of Number Theory **56** (1996), 4-11.
- [5] F. Kruckeberg, B₂ Folgen und verwandte Zahlenfolgen, Journal für die reine und angewandte Mathematik **206** (1961), 53-60.
- [6] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe II, Journal für die reine und angewandte Mathematik 194 (1955), 111–140.